Exercise 10.1.1

Show that

$$
G(x, t)= \begin{cases}x, & 0 \leq x<t \\ t, & t<x \leq 1\end{cases}
$$

is the Green's function for the operator $\mathcal{L}=-d^{2} / d x^{2}$ and the boundary conditions $y(0)=0$, $y^{\prime}(1)=0$.

Solution

The Green's function for an operator \mathcal{L} satisfies

$$
\mathcal{L} G=\delta(x-t)
$$

For the operator $\mathcal{L}=-d^{2} / d x^{2}$, this equation becomes

$$
\begin{equation*}
-\frac{d^{2} G}{d x^{2}}=\delta(x-t) \tag{1}
\end{equation*}
$$

If $x \neq t$, then the right side is zero.

$$
-\frac{d^{2} G}{d x^{2}}=0, \quad x \neq t
$$

The general solution is obtained by integrating both sides with respect to x twice. Different constants are needed for $x<t$ and for $x>t$.

$$
G(x, t)= \begin{cases}C_{1} x+C_{2} & \text { if } 0 \leq x<t \\ C_{3} x+C_{4} & \text { if } t<x \leq 1\end{cases}
$$

Four conditions are needed to determine these four constants. Two of them are obtained from the provided boundary conditions.

$$
\begin{aligned}
G(0, t) & =C_{1}(0)+C_{2}=0 \quad \rightarrow \quad C_{2}=0 \\
\frac{d G}{d x}(1, t) & =C_{3}=0
\end{aligned}
$$

As a result, the Green's function becomes

$$
G(x, t)=\left\{\begin{array}{ll}
C_{1} x & \text { if } 0 \leq x<t \\
C_{4} & \text { if } t<x \leq 1
\end{array} .\right.
$$

The third condition comes from the fact that the Green's function must be continuous at $x=t$: $G(t-, t)=G(t+, t)$.

$$
C_{1}(t)=C_{4}
$$

Consequently, the Green's function becomes

$$
G(x, t)=\left\{\begin{array}{ll}
C_{1} x & \text { if } 0 \leq x<t \\
C_{1} t & \text { if } t<x \leq 1
\end{array} .\right.
$$

The fourth and final condition is obtained from the defining equation of the Green's function, equation (1).

$$
-\frac{d^{2} G}{d x^{2}}=\delta(x-t)
$$

Integrate both sides with respect to x from $t-$ to $t+$.

$$
\begin{gathered}
-\int_{t-}^{t+} \frac{d^{2} G}{d x^{2}} d x=\int_{t-}^{t+} \delta(x-t) d x \\
-\left.\frac{d G}{d x}\right|_{t-} ^{t+}=1 \\
-\frac{d G}{d x}(t+, t)+\frac{d G}{d x}(t-, t)=1 \\
-(0)+\left(C_{1}\right)=1 \\
C_{1}=1
\end{gathered}
$$

Therefore, the Green's function for $\mathcal{L}=-d^{2} / d x^{2}$ subject to the provided boundary conditions is

$$
G(x, t)=\left\{\begin{array}{ll}
x & \text { if } 0 \leq x<t \\
t & \text { if } t<x \leq 1
\end{array} .\right.
$$

